LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER – APRIL 2023

MT 4502 - MODERN ALGEBRA

Date: 02-05-2023 Dept. No. Time: 09:00 AM - 12:00 NOON

PART A

Answer ALL the questions

- 1. Let *R* be the set of all numbers. Define * by x * y = xy + 1 for all *x*, *y* in *R*. Show that * is commutative but not associative.
- 2. Illustrate a partially ordered set.
- 3. Define a cyclic group.
- 4. Give an example of an abelian group which is not cyclic.
- 5. Define an automorphism of a group.
- 6. Let *G* be the group of non-zero real numbers under multiplication. and $f: G \to G$ be defined by $f(x)=x^2$ for all $x \in G$. Is *f* a homomorphism of *G* into *G*? Justify your answer.
- 7. Let Z be the ring of integers. Give all the maximal ideals of Z.
- 8. What is a division ring.
- 9. Define an integral domain with an example.
- 10. What is a Gaussian integer?

PART B

Answer any FIVE questions

- 11. If G is a group, then prove that
 - i) the identity element of G is unique.
 - ii) every $a \in G$ has an unique inverse in G.
- 12. Prove that a non-empty subset H of a group G is a subgroup of G if and only if HH=H and $H=H^{1}$.
- 13. Show that the union of two subgroups of G is a subgroup of G if and only if one is contained in the other.
- 14. If f is a homomorphism of a ring R into a ring R', then prove that the kernel of f is an ideal of R.
- 15. Show that a subgroup N of a group G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.
- 16. If f is a homomorphism of a group G into a group G', then prove that
 - (i) f(e) = e' where e' is the identity element of G'
 - (ii) $f(a^{-1}) = [f(a)]^{-1}$ for all $a \in G$.
- 17. Let *R* be an Euclidean ring. Then prove that any two elements *a* and *b* in *R* have a greatest common divisor *d* which can be expressed by $\lambda a + \mu b$ for some λ , μ in *R*.
- 18. Show that every finite integral domain is a field.

 $(10 \times 2 = 20)$

Max.: 100 Marks

 $(5 \times 8 = 40)$

PART C	
Answer Any TWO question	$(2 \ x \ 20 = 40)$
19. State and prove the fundamental theorem of arithmetic.	(20)
20. (a) State and prove Lagrange's theorem.	
(b) Let H be a subgroup of index 2 in a group G . Prove that H is a normal subgroup.	(15+5)
21. (a) State and prove the fundamental theorem of homomorphism on groups.	
(b) Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Prove that	
R is a field.	(12+8)
22. State and prove unique factorization theorem.	(20)

\$\$\$\$\$\$\$